- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Birrer, Michael J. (1)
-
Chowdhury, Shrabanti (1)
-
Gygi, Steven P. (1)
-
Huntoon, Catherine J. (1)
-
Karnitz, Larry M. (1)
-
Kaufmann, Scott H. (1)
-
Paulovich, Amanda G. (1)
-
Peng, Jie (1)
-
Wang, Pei (1)
-
Wang, Ru (1)
-
Yu, Qing (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Background Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases. However, there remain unsolved challenges in DAG learning to jointly model binary clinical outcome variables and continuous biomarker measurements. Results In this paper, we propose a new tool, DAGBagM, to learn DAGs with both continuous and binary nodes. By using appropriate models, DAGBagM allows for either continuous or binary nodes to be parent or child nodes. It employs a bootstrap aggregating strategy to reduce false positives in edge inference. At the same time, the aggregation procedure provides a flexible framework to robustly incorporate prior information on edges. Conclusions Through extensive simulation experiments, we demonstrate that DAGBagM has superior performance compared to alternative strategies for modeling mixed types of nodes. In addition, DAGBagM is computationally more efficient than two competing methods. When applying DAGBagM to proteogenomic datasets from ovarian cancer studies, we identify potential protein biomarkers for platinum refractory/resistant response in ovarian cancer. DAGBagM is made available as a github repository at https://github.com/jie108/dagbagM .more » « less
An official website of the United States government
